算法思路:dijkstra算法是把结点分为两个集合,一个是已经求出最短路的集合S,另一个就是其他结点的集合U,一开始S只有源结点V0,dijkstra算法就是不断的冲U集合中找出离中转点最近的点,然后把它加入到S集合中,加入后更新U集合的数据。
模拟一遍:一开始只有S只有v0源点,然后在U集合中找到了离v0最近的结点k,把k加入到S中,并把U中的结点数据更新。更新规则如下:if(dist[u]+map[u][j]<dist[j]) dist[j]=dist[u]+map[u][j] 其中dist[u]代表了v0到u的最短距离。map[u][j]表示u到j的距离。
具体代...
MST(Minimum Spanning Tree,最小生成树)问题有两种通用的解法,Prim算法就是其中之一,它是从点的方面考虑构建一颗MST,大致思想是:设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的...
Kruskal算法
1.概览
Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。
2.算法简单描述
1).记Graph中有v个顶点,e个边
2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边...
#include <stdio.h>
#include <stdlib.h>
int cmp(const void *a,const void *b)
{
return((int*)a)[1]-((int*)b)[1];
}
int main()
{
int t,n,i,x1;
int m[1005][2];
scanf("%d",&t);
for(i=1;i<=t;i++)
{
scanf("%d",&n);
...