鸽笼原理

作者在 2008-01-10 22:44:19 发布以下内容


  波萨曾在证明过程中用到在数学上称为鸽笼原理(PigeonholePrinciple)的东西。这原理是这样说的:如果把n+1个东西放进n个盒子里,有一些盒子必须包含最少2个东西。

有高六层的鸽笼,每一层有四个间隔,所以总共有6×4=24个鸽笼。现在我放进25只鸽进去,你一定看到有一个鸽笼会有2只鸽要挤在一起。

鸽笼原理就是这么简单,3岁以上的小孩子都会明白。

可是这原理在数学上却是有很重要的应用。

在19世纪时一个名叫狄利克雷(Dirichlet 1805—1859)的数学家,在研究数论的问题时最早很巧妙运用鸽笼原理去解决问题。后来德国数学家敏古斯基(Minkowski 1864—1909)也运用这原理得到一些结果。

到了20世纪初期杜尔(A.Thue 1863—1922)在不知道狄利克雷和敏古斯基的工作情况下,很机巧地利用鸽笼原理来解决不定方程的有理数解的问题,有12篇论文是用到这个原理。

后来西根(C.L.Siegel,1896—?)利用杜尔的结果发现了现在称为西根引理的东西,这引理(Lemma)是在研究超越数时是最基本必用的工具。
技术文章 | 阅读 2528 次
文章评论,共2条
zl芊芊zl(作者)
2008-01-10 22:54
1
http://hi.baidu.com/callchenxi/blog/item/5c8efa8da28eea11b21bbaef.html
(1)月黑风高穿袜子

有一个晚上你的房间的电灯忽然间坏了,伸手不见五指,而你又要出去,于是你就摸床底下的袜子。你有三双分别为红、白、蓝颜色的袜子,可是你平时做事随便,一脱袜就乱丢,在黑暗中不能知道哪一双是颜色相同的。

你想拿最少数目的袜子出去,在外面借街灯配成同颜色的一双。这最少数目应该是多少?

如果你懂得鸽笼原理,你就会知道只需拿出去四只袜子就行了。

为什么呢?因为如果我们有三个涂上红、白、蓝的盒子,里面各放进相对颜色的袜子,只要我们抽出4只袜子一定有一个盒子是空的,那么这空的盒子取出的袜子是可以拿来穿。

(2)手指纹和头发

据说世界上没有两个人的手指纹是一样的,因此警方在处理犯罪问题时很重视手指纹,希望通过手指纹来破案或检定犯人。

可是你知道不知道:在12亿中国人当中,最少有两个人的头发是一样的多?

道理是很简单,人的头发数目是不会超过12亿这么大的数目字!假定人最多有N根头发。现在我们想像有编上号码1,2,3,4,…一直到N的房子。

谁有多少头发,谁就进入那编号和他的头发数相同的房子去。因此张乐平先生的“三毛”应该进入“3号房子”。

现在假定每间房巳进入一个人,那么还剩下“九亿减N”个人,这数目不会等于零,我们现在随便挑一个放进一间和他头发数相同的房子,他就会在里面遇到和他有相同头发数目的同志了。

(3)戏院观众的生日

在一间能容纳1500个座位的戏院里,证明如果戏院坐满人时,一定最少有五个观众是同月同日生。

现在假定一年有三百六十五天。想像有一个很大的鸽子笼,这笼有编上“一月一日”,“一月二日”,至到“十二月三十一日”为止的标志的间隔。

假定现在每个间隔都塞进四个人,那么 4×365=1460个是进去鸽子笼子里去,还剩下1500-1460=40人。只要任何一人进入鸽子笼,就有五个人是有相同的生日了。

鸽笼原理在数学上的运用

现在我想举一些数学上的问题说明鸽笼原理的运用。

(1)斐波那契数的一个性质

斐波那契数列是这样的数列:1,1,2,3,5,8,13,21,34,…。从1,1以后的各项是前面两项的数的和组成。

在18世纪时法国大数学家和物理学家拉格朗日(J.L.La-grange)发现这斐波那契数有这样有趣的性质:

如果你用2来除各项,并写下它的余数,你会看到这样的情形1,1,0,1,1,0,1,1,0,…

如果用3来除各项,写下它的余数,你就得到

1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,…

如果用4来除各项,写下它的余数,你就会得到

1,1,2,3,1,0,1,1,2,3,1,0,…

现在观察用2除所得的数列,从开头算起每隔三段,后面的数列就重复前面的数列。用3除所得的数列,从开头算起每隔八段,后面的数列就重复前面的数列样子。对于以4除所得的余数数列也有同样的情况:每隔六段,后面的数列就重复前面的数列样子。

拉格朗日发现不管你用什么数字去除,余数数列会出现有规律的重复现象。

为什么会有这样的现象呢?

如果我们用一个整数K来除斐波那契数列的数,它可能的余数是0,1,2,…,K-1。

由于在斐波那契数的每一项是前面两项的和,它被K除后的余数是等于前两项被K除余数的和。(注意:如果这和是大过K,我们取它被K除后的余数)只要有一对相邻的余数重复出现,那么以后的数列从那对数开始就会重复出现了。不同对相邻余数可能的数目有K2个,因此由鸽笼原理,我们知道只要适当大的项数,一定会有一对相邻余数重复。因此斐波那契数列的余数数列会有周期重复现象。

(2)五个大头钉在等边三角板里的位置

有一个每边长2单位的正三角形(即三边都相等的三角形)的三角板。

你随便在上面钉上五个大头钉,一定会有一对大头钉的距离是小过一单位。

你不相信的话,可以做几次实验看看是否一直是如此。我现在要用鸽笼原理来解决这个问题。




在三角板的每边取中点,然后用线段连结这些中点,把这正三角形分成四个全等的小正三角形图。现在在每一个小三角形里任何两点的距离是不会超过1个单位。

由于我们有五个大头钉,不管怎么样放一定有两个要落进同一个小正三角形里,因此这两个大头钉的距离是不会超过一个单位。
zl芊芊zl(作者)
2008-01-10 22:54
2
动脑筋 想想看

(1)给出任意12个数字,证明当用11来除时,一定有一对数的余数是相同。

(2)如果在一个每边都是2单位的正三角形板上随便钉上17个大

(3)如果在一个每边都是2单位的正方形板上随便钉上5根钉,

(4)我们一定能够在一个每边都是2单位长的正方形板上适当的钉上9根钉,使它们之中不存在有两根钉的距离是小于1单位。

(5)(英国数学奥林匹克1975年的问题)在一个半径为1单位的圆板上钉7个钉,使得没有两个钉的距离是大过或等于1,那么这7个钉一定会有一个位置恰好是在圆心上。

(6)任意6个人在一起,一定会有其中两种情形之一发生:第一种情形——有3个人互相认识。第二种情形——有3个人,他们之间完全不认识。

(7)(a)你能不能在从1到200的整数里挑选出100个自然数,使到任何其中之一不能整除剩下的99个数。

(b)证明如果在从1到200间随便取101个自然数,那么一定最少有两个自然数,其中之一能整除另外的数。

(8)随便给出10个10位数的数字,我们一定能把它分成两部分,使到每一部分的整数的和是等于其他一部分的整数的和。
游客请输入验证码