线段树和点树

作者在 2008-04-10 16:39:11 发布以下内容

线段树用于实现动态删除和插入某一线段的操作,进行扩张后可以求一个点在多少个线段上,线段一共有多长,求出线段的覆盖,等操作。

以下是来自http://hi.baidu.com/alpc62/blog/item/469edeca0043e382c8176875.html的blog,

要查看原文可以到他那里去看。

 

举例说明:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次

在[0,7]区间上建立一棵满二叉树:(为了和已知线段区别,用【】表示线段树中的线段)

                                               【0,7】
                               /                                            \
                     【0,3】                                           【4,7】
                  /               \                                    /                \
       【0,1】             【2,3】                 【4,5】               【6,7】
         /      \                 /      \                     /      \                   /      \
【0,0】 【1,1】【2,2】 【3,3】   【4,4】 【5,5】 【6,6】 【7,7】

每个节点用结构体:

struct line
{
      int left,right;//左端点、右端点
      int n;//记录这条线段出现了多少次,默认为0
}a[16];

和堆类似,满二叉树的性质决定a[i]的左儿子是a[2*i]、右儿子是a[2*i+1];

然后对于已知的线段依次进行插入操作:

从树根开始调用递归函数insert

void insert(int s,int t,int step)//要插入的线段的左端点和右端点、以及当前线段树中的某条线段
{
      if (s==a[step].left && t==a[step].right)
      {
            a[step].n++;//插入的线段匹配则此条线段的记录+1
            return;//插入结束返回
      }
      if (a[step].left==a[step].right)   return;//当前线段树的线段没有儿子,插入结束返回
      int mid=(a[step].left+a[step].right)/2;
      if (mid>=t)    insert(s,t,step*2);//如果中点在t的右边,则应该插入到左儿子
      else if (mid<s)    insert(s,t,step*2+1);//如果中点在s的左边,则应该插入到右儿子
      else//否则,中点一定在s和t之间,把待插线段分成两半分别插到左右儿子里面
      {
            insert(s,mid,step*2);
            insert(mid+1,t,step*2+1);
      }
}

三条已知线段插入过程:

[2,5]

--[2,5]与【0,7】比较,分成两部分:[2,3]插到左儿子【0,3】,[4,5]插到右儿子【4,7】

--[2,3]与【0,3】比较,插到右儿子【2,3】;[4,5]和【4,7】比较,插到左儿子【4,5】

--[2,3]与【2,3】匹配,【2,3】记录+1;[4,5]与【4,5】匹配,【4,5】记录+1

[4,6]

--[4,6]与【0,7】比较,插到右儿子【4,7】

--[4,6]与【4,7】比较,分成两部分,[4,5]插到左儿子【4,5】;[6,6]插到右儿子【6,7】

--[4,5]与【4,5】匹配,【4,5】记录+1;[6,6]与【6,7】比较,插到左儿子【6,6】

--[6,6]与【6,6】匹配,【6,6】记录+1

[0,7]

--[0,7]与【0,7】匹配,【0,7】记录+1

插入过程结束,线段树上的记录如下(红色数字为每条线段的记录n):

                                               【0,7】
                                                    1
                               /                                            \
                     【0,3】                                           【4,7】
                         0                                                     0
                 /                 \                                     /                 \
       【0,1】                 【2,3】                【4,5】                【6,7】
            0                           1                          2                         0
          /    \                      /      \                     /     \                    /      \
【0,0】 【1,1】 【2,2】 【3,3】 【4,4】 【5,5】 【6,6】 【7,7】
     0            0            0            0            0            0           1           0

询问操作和插入操作类似,也是递归过程,略

2——依次把【0,7】 【0,3】 【2,3】 【2,2】的记录n加起来,结果为2

4——依次把【0,7】 【4,7】 【4,5】 【4,4】的记录n加起来,结果为3

7——依次把【0,7】 【4,7】 【6,7】 【7,7】的记录n加起来,结果为1

不管是插入操作还是查询操作,每次操作的执行次数仅为树的深度——logN

建树有n次插入操作,n*logN,一次查询要logN,m次就是m*logN;总共复杂度O(n+m)*logN,这道题N不超过30000,logN约等于14,所以计算量在10^5~10^6之间,比普通方法快了1000倍;

这道题是线段树最基本的操作,只用到了插入和查找;删除操作和插入类似,扩展功能的还有测度、连续段数等等,在N数据范围很大的时候,依然可以用离散化的方法建树。

数据结构 | 阅读 7138 次
文章评论,共0条
游客请输入验证码
浏览260762次