作者在 2010-02-22 22:24:35 发布以下内容
程序代码:
#include<stdio.h>
#define NUM 10/* 定义物品总数*/
#define CONTENT 10 /*定义包的容量*/
void knapsack(int v[NUM],int w[NUM],int c,int m[NUM ][CONTENT])
{
int n=NUM-1;
int i,j;
int jMax;
if((w[n]-1)< c)
jMax = w[n]-1;
else
jMax = c;
/* 初始化m[n][j] */
for(j = 0; j <= jMax; j++)
m[n][j] = 0;
for(j = jMax +1; j <= c; j++)
m[n][j] = v[n];
/*使用非递归的算法来求解m[i][j] */
for(i = n-1; i > 0; i--)
{
if((w[i]-1)< c)
jMax = w[i]-1;
else
jMax = c;
for(j = 0; j <= jMax; j++)
m[i][j] = m[i+1][j] ;
for(j = jMax +1; j <= c; j++)
{
if(m[i+1][j] >= (m[i+1][j-w[i]]+v[i]))
m[i][j] = m[i+1][j] ;
else
m[i][j] = m[i+1][j-w[i]]+v[i];
}
}
if(c>w[0])
{
if(m[1][c] >= (m[1][c-w[0]]+v[0]))
m[0][c]= m[1][c];
else
m[0][c]= m[1][c-w[0]]+v[0];
}
else
m[0][c]= m[1][c];
}
/*寻找最优解*/
void traceback(int flag[NUM],int w[NUM],int m[NUM][CONTENT])
{
int n = NUM -1;
int i;
int c = CONTENT;
for(i = 0; i < n; i++)
{
if(m[i][c] == m[i+1][c])
flag[i] = 0;
else
{
flag[i] = 1;
c-=w[i];
}
}
if(m[n][c] >0)
flag[n] = 1;
else
flag[n] = 0;
}
/* 打印最优解*/
void printResult(int flag[NUM],int w[NUM],int v[NUM],int m[NUM][CONTENT])
{
int i;
printf("the knapsack should contain:\n");
printf(" num weight value \n");
for(i = 0;i < NUM; i++)
{
if(flag[i] == 1)
printf(" %d %d %d\n",i,w[i],v[i]);
}
printf("the max value in the knapsack is: %d\n",m[0][CONTENT]);
}
int main()
{
int value[NUM]={5,2,3,4,3,6,5,7,8,2};
int weight[NUM]={2,1,3,2,4,3,5,6,2,2};
int c = CONTENT;
int maxvalue[NUM][CONTENT];
int flag[NUM]={0,0,0,0,0,0,0,0,0,0};
clrscr();
printf("****************************************\n");
printf("* this program will solve *\n");
printf("* the problem of 0-1knapsack *\n");
printf("****************************************\n");
/*计算最优值*/
knapsack(value,weight,c,maxvalue);
/*构造最优解*/
traceback(flag,weight,maxvalue);
/*打印程序的结果*/
printResult(flag,weight,value,maxvalue);
getch();
return 0;
}
#define NUM 10/* 定义物品总数*/
#define CONTENT 10 /*定义包的容量*/
void knapsack(int v[NUM],int w[NUM],int c,int m[NUM ][CONTENT])
{
int n=NUM-1;
int i,j;
int jMax;
if((w[n]-1)< c)
jMax = w[n]-1;
else
jMax = c;
/* 初始化m[n][j] */
for(j = 0; j <= jMax; j++)
m[n][j] = 0;
for(j = jMax +1; j <= c; j++)
m[n][j] = v[n];
/*使用非递归的算法来求解m[i][j] */
for(i = n-1; i > 0; i--)
{
if((w[i]-1)< c)
jMax = w[i]-1;
else
jMax = c;
for(j = 0; j <= jMax; j++)
m[i][j] = m[i+1][j] ;
for(j = jMax +1; j <= c; j++)
{
if(m[i+1][j] >= (m[i+1][j-w[i]]+v[i]))
m[i][j] = m[i+1][j] ;
else
m[i][j] = m[i+1][j-w[i]]+v[i];
}
}
if(c>w[0])
{
if(m[1][c] >= (m[1][c-w[0]]+v[0]))
m[0][c]= m[1][c];
else
m[0][c]= m[1][c-w[0]]+v[0];
}
else
m[0][c]= m[1][c];
}
/*寻找最优解*/
void traceback(int flag[NUM],int w[NUM],int m[NUM][CONTENT])
{
int n = NUM -1;
int i;
int c = CONTENT;
for(i = 0; i < n; i++)
{
if(m[i][c] == m[i+1][c])
flag[i] = 0;
else
{
flag[i] = 1;
c-=w[i];
}
}
if(m[n][c] >0)
flag[n] = 1;
else
flag[n] = 0;
}
/* 打印最优解*/
void printResult(int flag[NUM],int w[NUM],int v[NUM],int m[NUM][CONTENT])
{
int i;
printf("the knapsack should contain:\n");
printf(" num weight value \n");
for(i = 0;i < NUM; i++)
{
if(flag[i] == 1)
printf(" %d %d %d\n",i,w[i],v[i]);
}
printf("the max value in the knapsack is: %d\n",m[0][CONTENT]);
}
int main()
{
int value[NUM]={5,2,3,4,3,6,5,7,8,2};
int weight[NUM]={2,1,3,2,4,3,5,6,2,2};
int c = CONTENT;
int maxvalue[NUM][CONTENT];
int flag[NUM]={0,0,0,0,0,0,0,0,0,0};
clrscr();
printf("****************************************\n");
printf("* this program will solve *\n");
printf("* the problem of 0-1knapsack *\n");
printf("****************************************\n");
/*计算最优值*/
knapsack(value,weight,c,maxvalue);
/*构造最优解*/
traceback(flag,weight,maxvalue);
/*打印程序的结果*/
printResult(flag,weight,value,maxvalue);
getch();
return 0;
}